
CUTTER CONSORTIUM

Don’t Blame It All on
Release Management
by Sebastian Konkol, Senior Consultant,
Cutter Consortium

After the publication of Part I of my two-part Executive
Report series1, 2 on release management, I received some
comments. Some of the issues mentioned could be seen
as symptomatic of each organization that deals with
release management. In light of these comments and
from a recent consulting project at a mobile operator
struggling with release issues related to its IT and
VAS platforms environments, I decided to revisit
release management and provide another perspective
in this Executive Update: how release management helps
uncover problems that can directly be attributed to soft-
ware development, architecture, and collaboration.

SOURCE OF ALL EVIL?

Quite often I hear how bad release management is, as
well as the hurdle it adds to technology management
and operations. It is look at as the source of many prob-
lems and a major showstopper for valuable endeavors.
The problems could be expressed in the following
ways: “The releasing schema has such time constraints
that we cannot deliver information systems of accept-
able quality”; or “This requires much design up front —
we all should be agile, but release management forbids
us to do so”; or “Because of this release management,
our IT environment transforms gradually into a hardly
manageable, singular entity.” Do you agree with such
proclamations?

Let me start with some examples of problems with
definitions (see Table 1), all said to result from release
management. In my opinion, these problems have other
sources. Having release management in place allows us
to see these problems, but release management is not
the true source. In addition to those listed in the table,
numerous other problems are attributed to release man-
agement only because they are spotted in the context of
release management tasks and duties.

Enterprise Architecture Advisory Service
Executive Update Vol. 12, No. 7

The Problem The Real Issue

Not standardized packages; contains modifications

not related to architecture components.

Software development practices are not integrated

with architecture management.

Modifications, including bug fixes, may be

introduced only incrementally.

Software development practices are capable of

fixing bugs only in patching mode.

Modifications are not ready to be validated on a

gate, making the process late.

There is a lack of agility in the software development

methodology being exercised.

Release scope regards the whole IT environment. Architecture definition does not cover

manageability and extensibility viewpoints.

Release environment buildup is very

time-consuming.

Architecture definition does not cover

manageability and extensibility viewpoints.

Validation on each gate takes too much time and

effort (related to scope of changes introduced).

Scope of tests (especially regression) can’t be limited

due to lack of integration with architecture work.

Expected pace of modifications introduction is too

fast to be controlled or to deliver quality software.

There is a lack of agility in the software development

methodology being exercised.

Table 1 — Problems vs. Real Issues

http://www.cutter.com
http://www.cutter.com
http://www.cutter.com

ENTERPRISE ARCHITECTURE ADVISORY SERVICE2

Vol. 12, No. 7 ©2009 Cutter Consortium

FOR WHAT SHOULD WE AIM?

As identifying each problem represents potential for
overall improvement, I am usually far from starting a
religious war about whether release management helps.
Still, let me present my view about what should be done
with the real sources of the problems identified in the
scope of release management. For example, Table 2 pres-
ents the problems identified and the solutions proposed
within the project mentioned earlier. All problems noted
were previously attributed to release management due
to their symptoms observed in that context.

Release Management or Software Development?

So what problems in software development practice
raise issues observed in the context of implementing
releases? First, consider people, who are sometimes lazy
and incompetent. Simply speaking, it is not enough for
a developer to know the syntax of a programming lan-
guage. He or she must also understand the purpose.
Good programmers know their workshop, use patterns,
and accept architectural constraints. I believe most of
the problems in this scope are related to human nature.
Apart from the discipline, I find a lack of standards to

The Executive Update is a publication of the Enterprise Architecture Advisory Service. ©2009 by Cutter Consortium. All rights reserved.
Unauthorized reproduction in any form, including photocopying, faxing, image scanning, and downloading electronic copies, is against
the law. Reprints make an excellent training tool. For information about reprints and/or back issues of Cutter Consortium publications,
call +1 781 648 8700 or e-mail service@cutter.com.

Problems Identified Resolution Proposed

• Business releases and technical releases mashed

 up; business releases depend on technology

 release schedules.

• Cascading releases in the process in parallel;

 next release built on not-yet-stabilized results

 of previous release.

• Lack of releasing paradigms: architecture and

 design rules, no refactoring allowed.

• Lack of discipline; cutoff “not mandatory.”

• Fewer decision gates; decisions more

 condensed.

• Minimization of cascading releases; less

 parallelism in release implementation.

• Architecture should determine border

 of release contents.

• Distinguish business releases from technical

 and refactoring releases.

• Open and honest relations to business long term.

• Missing or problematic competencies; good

 designer, good programmer, good manager.

• Software developed internally interrelated;

 no possibility of detaching some modification

 from release contents.

• No standards for handling emulators for

 external systems in case they are missing in

 development environment.

• Lack of discipline; separation of modifications

 developed; acceptance of architecture and

 design patterns.

• Change in focus — from development

 to integration.

• Extending development responsibility —

 from software integration to production

 acceptance.

• Usage of architecture patterns, cooperation

 with architects on the level of design.

• Missing or problematic competencies; good

 and responsible architect.

• Lack of release management perspective in

 architectural work.

• Standards for systems interconnection missing.

• Architectural work quality; dynamism of IT

 environment extensibility.

• Business-focused IT environment

 decomposition onto areas to be released

 independently of each other, but coordinated

 inside each of them.

• Real architecture management; cooperation

 with business on the strategic level instead

 of sitting and waiting where it will take us.

• Problematic way of thinking; forcing needs

 with no regards for constraints.

• Lack of trust for a long time.

• Education to change way of thinking; “What

 can we do with what we have?” instead of

 “What is the most ideal thing we could require?”

• Open and honest relations to business; new

 opening for better relations and building trust.

R
e
le

a
se

 M
a
n

a
g

e
m

e
n

t
S
o

ft
w

a
re

 D
e
v
e
lo

p
m

e
n

t
A

rc
h

it
e
c
tu

re
B

u
si

n
e
ss

R
e
la

ti
o

n
s

Table 2 — Problems and Proposed Resolutions

mailto:service@cutter.com

EXECUTIVE UPDATE 3

www.cutter.com Vol. 12, No. 7

be a strong factor resulting in many problems. Those
standards concern coding rules, use of libraries, or other
design patterns.

It does not make sense to have the software develop-
ment methodology defined with no regard for the
releasing schema; they must cooperate efficiently.
In this regard, the more agility used in the software
development method, the better the overall outcome.

Release Management or Architecture?

As with software development, many release manage-
ment problems rooted in architecture have human fac-
tors. The role of architecture is commonly stressed, but
sometimes architects treat their work as a periodic task,
something that takes place only during a big develop-
ment. In truth, architecture and an architect’s active
support are crucial for release implementation to be
successful. The architecture should define the division
of the overall IT environment into the pieces that are
released independently and determine standards or
patterns to be used during a design effort.

Active support from architecture management is a must.
Such support should regard the design of the architec-
ture with its release in mind and in terms of the presence
of the architects in the context of release decisions.

Release Management or Transparency and Collaboration?

The class of problems most difficult to handle is related
to the way business and IT cooperate. Too many times,
I have seen examples of IT covering its mistakes, such
as obvious design faults or the inability to deliver, with
statements that are on the border of the truth. To be
fair, businesspeople do the same while, for example,
justifying the necessity of having this very complex sys-
tem working perfectly 24/7. Both blame the other side
for their own faults. Such escape from responsibility
usually results in the inability to make local decisions
supporting overall company goals.

These folks must talk to each other, share risks and
concerns, and act with bilateral support in mind, not
their own politics. Company business cannot suffer due
to some personal attitudes or local hierarchical games.

REAL PROBLEMS WITH RELEASE MANAGEMENT

Yes, some problems really are rooted in the inefficien-
cies or inadequacies of release management practice.
These concern influencing architecture and design in
order to be able to remove some modifications from

release contents or the ability to introduce “quick and
dirty” releases to be cleaned during subsequent refac-
toring release. But most often, the real problem is the
lack of discipline in implementing release management
tasks or the lack of power to force the execution of the
rules involved.

CONCLUSIONS

After distilling some problems from symptoms
observed in the scope of release management tasks,
it became clear why I needed to examine some of the
real issues. Most of these problems should be cured in
other areas of technology management. They say that
what cannot be measured cannot be managed. I agree
with that. I think it is better to have the possibility of
seeing the problem — even in the context of release
management — and consciously cure it than not to
notice it at all. Release management creates the frame-
work under which problems encountered can be iden-
tified and properly addressed. The drawback is that,
initially, release management will be said to cause
problems — but it is still worth doing.

With respect to the problems presented, the relations
among technology management processes can be
illustrated in the way the cartoon character Shrek
describes ogres: they have layers.3 Problems not solved
in cooperation between business and IT are the source
of problems within architecture. In turn, unsolved prob-
lems in architecture raise issues in software development
tasks, and, as we can see, all of them strike release man-
agement at the very end.

The true faults in release management are usually rooted
in lack of discipline or lack of power. Necessary timing,
decision-making efficiency, obeying of the governance
rules, and appropriate integration with other technology
management processes — these are the key lessons to be
learned by the release management team.

ENDNOTES
1Konkol, Sebastian. “Release Management Framework: Part I.”
Cutter Consortium Enterprise Architecture Executive Report,
Vol. 11, No. 11, 2008.

2Konkol, Sebastian. “Release Management Framework: Part II.”
Cutter Consortium Enterprise Architecture Executive Report,
Vol. 12, No. 2, 2009.

3In the animated motion picture Shrek, Shrek tells his friend
Donkey that “Ogres are like onions.... Onions have layers.
Ogres have layers.”

http://www.cutter.com

ENTERPRISE ARCHITECTURE ADVISORY SERVICE4

Vol. 12, No. 7 ©2009 Cutter Consortium

ABOUT THE AUTHOR

Sebastian Konkol is a Senior Consultant with Cutter
Consortium’s Enterprise Architecture and Enterprise Risk
Management & Governance practices and is an enterprise
startup and strategy consultant in Poland. He specializes in
strategic IT planning, business technology partnership from
both the technology and organizational perspectives, and foster-
ing new technology management methods supported by social
psychology. He is codeveloper of the Enterprise Architecture
Management (EAM) approach and an expert in IT governance.
He divides his time among running strategic IT consulting
endeavors, managing projects, and sharing his expertise in
EA management and IT governance. Currently, Mr. Konkol is
developing strategic technology management frameworks that
bind company strategy, EA, and corporate governance. As a
social networking analyst and complexity theory enthusiast,
he is also working on concepts that apply contemporary social
psychology tools to the field of technology management. Mr.
Konkol’s professional goal is to help technology-dependent
organizations achieve optimal technology usage in order to
create and sustain competitive advantage, including harnessing
the technical, business, and organizational perspectives through
a partnership approach. Prior to becoming an independent con-
sultant, in 2003, he worked, since 1997, for a mobile telecom
operator as project leader in the field of GSM network surveil-
lance and later as program manager responsible for running
projects aimed at creating and providing GSM value-added
services to the mass market. He has written numerous pub-
lications dealing with the business use of technology, telecom
information environment management, and IT organization
management. Mr. Konkol can be reached at skonkol@
cutter.com.

